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Abstract. We study the zero-temperature spin fluctuations of a two-dimensional itinerant-electron system
with an incommensurate magnetic ground state described by a single-band Hubbard Hamiltonian. We
introduce the (broken-symmetry) magnetic phase at the mean-field (Hartree-Fock) level through a spiral
spin configuration with characteristic wave vector Q different in general from the antiferromagnetic wave
vector QAF, and consider spin fluctuations over and above it within the electronic random-phase (RPA)
approximation. We obtain a closed system of equations for the generalized wave vector and frequency
dependent susceptibilities, which are equivalent to the ones reported recently by Brenig. We obtain, in
addition, analytic results for the spin-wave dispersion relation in the strong-coupling limit of the Hubbard
Hamiltonian and find that at finite doping the spin-wave dispersion relation has a hybrid form between
that associated with the (localized) Heisenberg model and that associated with the (long-range) RKKY
exchange interaction. We also find an instability of the spin-wave spectrum in a finite region about the
center of the Brillouin zone, which signals a physical instability toward a different spin- or, possibly, charge-
ordered phase, as, for example, the stripe structures observed in the high-Tc materials. We expect, however,
on physical grounds that for wave vectors external to this region the spin-wave spectrum that we have
determined should survive consideration of more sophisticated mean-field solutions.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.30.Ds Spin waves – 75.10.Lp Band
and itinerant models

1 Introduction

Spin fluctuations about incommensurate static magnetic
configurations represent an interesting problem, especially
in the view of the accumulating experimental evidence on
the parent compounds of the high-Tc cuprate materials [1].
The dynamic structure factor S(q, ω) at wave vector q
and frequency ω, as measured by inelastic neutron scat-
tering, shows noticeable peaks over the background when
q = Q = QAF + ∆ Q (|∆ Q| � |QAF|) for increasing
dopant concentration, at finite albeit small values of ω
(with ω � J , J being the exchange coupling) [2]. Fur-
ther experimental studies for larger values of |q − QAF|
have also detected the presence of well-defined spin-wave-
type excitations close to the boundary of the antiferro-
magnetic (AF) Brillouin zone (BZ) [3]. The fact that spin-
wave excitations with small wavelength (i.e., comparable
to lattice spacing) can be detected even in the absence
of long-range magnetic order, has actually been well es-
tablished experimentally since the eighties also in more
conventional magnetic materials [4]. This state of affairs
has, in turn, prompted a number of theoretical studies on
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dynamical excitations about incommensurate spin config-
urations [5–9].

From the theoretical point of view, inclusion of incom-
mensurate spin configurations in cluster mean-field calcu-
lations would require one to consider cluster sizes at least
as big as the spatial extension of the incommensurability.
In this way, complex incommensurate patterns could as
well be included in the calculation, at the price of consid-
erable numerical effort and without full analytic control on
the results. Alternatively, one may set up calculations for
an infinite system with necessarily simpler incommensu-
rate spin configurations, with the advantage, however, of
obtaining analytic results (at least) in some limits, which
in turn may admit a simple physical interpretation. In
this respect, the spiral spin configuration appears to be
the only one for which analytic calculations can be per-
formed, in the sense that the constituent equations can
be brought to a closed form which is manageable for con-
trolled analytic approximations. Indeed previous analytic
calculations have considered static long-range background
spiral spin configurations, on top of which dynamical spin
excitations have been considered [5,7].

The intrinsic simplicity of the background spiral
spin configuration and the neglect of its dynamics have
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resulted, however, into an instability of the spin-wave
spectrum in a limited region of the Brillouin zone [7].
This outcome could, in principle, make the resulting spin-
wave spectrum altogether unreliable, as the underlying
spin configuration (over and above which spin-wave ex-
citations are constructed) could be much more complex
than a spiral one and even possess a dynamics of its own.
In addition, a static or dynamic charge modulation can
be present as well, like the stripe structures observed in
some underdoped cuprates [9,10]. One expects, however,
on physical grounds the short-wavelength spin-wave exci-
tations, obtained on top of a spiral configuration, to pre-
serve their dispersion relation even when considering more
complex long-range underlying structures.

Within this framework, we have pursued the an-
alytic calculation with an underlying spiral spin con-
figuration for an itinerant electronic system described
by a single-band Hubbard Hamiltonian. The spin (and
charge) dynamics have bee described within the electronic
random-phase (RPA) approximation for the dynamical
susceptibilities, based on a broken-symmetry Hartree-
Fock (HF) mean-field solution, along the lines of refer-
ence [7]. In particular, we have considered the large U/t
limit in detail (where t is the nearest-neighbor hopping
matrix element and U is the local on-site repulsion in the
Hubbard Hamiltonian), for which the spin-wave disper-
sion relation (as obtained from the poles of the dynamical
susceptibilities) can be expressed in analytic form by sys-
tematically expanding in the small parameter t/U . In this
way, we have obtained an analytic expression for the spin-
wave dispersion relation valid in the limit t/U � 1 (cf.
Eq. (58) below), showing a novel characteristic structure,
namely, a hybrid form between the dispersion relations ob-
tained within the nearest-neighbor Heisenberg model for
localized spins [11] and the long-range RKKY interaction
mediated by the conduction electrons [12]. The fact that
an, in principle, weak-coupling method (the RPA) is used
in order to find the spin-wave behavior at strong-coupling
is not a contradiction. It is well known [13] that the RPA
gives the correct behavior of the spin-wave dispersion and
velocity, provided the appropriate broken-symmetry HF
solution is used for the dressed Green’s function.

This analytic form of the dispersion relation could ad-
mittedly not have been guessed a priori , by fitting the
dispersion relation obtained numerically (from the loca-
tion of the poles of the dynamical susceptibilities) with
a Heisenberg model extending in principle to a large al-
beit finite number of neighbors. Neither, this analytic form
can be simply reduced to a nearest-neighbor Heisenberg
dispersion relation with a doping-dependent exchange in-
tegral [14]. Rather, the characteristic long-range RKKY
contribution would require fitting to a Heisenberg model
with an infinite number of neighbors. This would contra-
dict the spirit with which the Heisenberg model was intro-
duced to start with [15], namely, as a fitting model that
makes physical sense when the interactions extend to a
limited number of neighbors only. Note that this situa-
tion contrasts that found at half-filling of the Hubbard
band (i.e., in the absence of doping), where the antifer-

romagnetic (AF) spin-wave spectrum can be nicely fitted
by a Heisenberg model extending at most to a few neigh-
bors [16]. Our results also show that the magnitude of
the overall exchange integral, which characterizes the spin-
wave spectrum, decreases with increasing doping and van-
ishes when the transition to a ferromagnetic case occurs
at the mean-field level.

The plan of the paper is as follows. Section 2 ob-
tains the implicit form of the spin-wave dispersion relation
within the HF-RPA approximations, by solving for the
dynamical susceptibilities of the itinerant electron system
in the presence of an incommensurate spin spiral ground
state. Section 3 focuses on the small t/U expansion of
the results of Section 2, which requires a careful analy-
sis of the doping dependence of the relevant quantities.
Section 4 discusses the main results of this paper and Sec-
tion 5 gives our conclusions. For the sake of completeness,
we report in the Appendices details of the analytic cal-
culations, and adapt know results for the Heisenberg and
RKKY spin-wave spectra to the present context.

2 Dynamical susceptibilities within
the itinerant-electron RPA approximation
with an incommensurate spin-spiral ground
state

In this section, we give the derivation of the spin-wave dis-
persion relation for a two-dimensional itinerant-electron
system in the presence of an incommensurate spiral mag-
netic structure with a generic characteristic wave vector
Q, within the electronic RPA approximation. Although
our results for the dispersion relation coincide with those
previously given by Brenig in reference [7], we provide
here in addition the expression of the correlation func-
tions which can be relevant for a direct comparison with
neutron scattering experiments.

We emphasize that the finding of a closed-form expres-
sion for the correlation functions for any characteristic
wave vector Q (incommensurate with the lattice spacing)
and not just for the (commensurate) antiferromagnetic
wave vector QAF is altogether a nontrivial result, being
intrinsically related to the peculiar pattern of the spiral
magnetic solution for the ground state.

We begin by considering the generalized correlation
function at zero temperature in the broken-symmetry
phase:

Xµ,ν(rt, r′t′) = −i 〈T [Sµ(r, t)Sν(r′, t′)]〉
+i 〈Sµ(r, t)〉 〈Sν(r′, t′)〉 (1)

where the average 〈· · · 〉 is taken over the ground state, T
stands here for Wick’s time-ordering operator, and Sµ(r)
is given by (we set h̄ = 1 throughout)

Sµ(r) =
1
2

∑
α,β

ψ†α(r)σµα,β ψβ(r) . (2)

In these expressions, µ, ν = (0, x, y, z), σµ is a Pauli ma-
trix (with σ0 equal to the 2× 2 identity matrix), and α, β
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are spin labels. Note that 2S0(r) coincides with the den-
sity operator, which couples with the spin operator in the
presence of an incommensurate spiral magnetic structure.

For the simple band we are considering, the field op-
erator in equation (2) can be represented in the form

ψα(r) =
∑
i

φ(r −Ri) ciα , (3)

where φ(r) is the atomic (Wannier) orbital associated with
the simple band, Ri is the lattice vector locating site i,
and ciα is a destruction operator. Time evolution in equa-
tion (1) is governed by the Heisenberg representation:

ψα(r, t) = eiHt ψα(r) e−iHt (4)

where for H we take the simple-band two-dimensional
Hubbard Hamiltonian.

In terms of the two-particle correlation function L [17],
the generalized correlation function (1) takes the form

Xµ,ν(rt, r′t′) = − i
4

∑
α,β

∑
α′,β′

σµα,β σ
ν
α′,β′

×L(rtβ, r′t′β′; rt+α, r′t′+α′) (5)

with t+ = t + η (η = 0+), where L satisfies the Bethe-
Salpeter equation:

L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′)

+
∫

d3 d4 d5 d6G(1, 3)G(4, 1′)Ξ(3, 5; 4, 6)L(6, 2; 5, 2′)

(6)

(1, 2, · · · signifying the set of space, spin, and time vari-
ables). In the above expression,

G(1, 2) = −i
〈
T
[
ψ(1)ψ†(2)

]〉
(7)

is the single-particle Green’s function and the kernel Ξ
represents an effective two-particle interaction. In partic-
ular, within the RPA approximation we are adopting, the
kernel Ξ takes the form:

Ξ(3, 5; 4, 6) = −iv0 δ(3, 4) δ(5, 6+) δ(x3, x6) δ(α3,−α6)
+iv0 δ(3, 6) δ(4, 5) δ(x+

3 , x4) δ(α3,−α4) (8)

with the notation x ≡ (r, t) and where the constant v0 can
be related to the parameter U of the Hubbard Hamiltonian
as follows:

U = v0

∫
dr |φ(r)|4 . (9)

Entering equations (6) and (8) into equation (5), we obtain
for the generalized correlation function within the RPA

approximation:

Xµ,ν(x, x′) =

− i
4

∑
α,β

∑
α′,β′

σµα,β σ
ν
α′,β′ G(xβ, x′α′)G(x′β′, xα)

+
v0

4
(−i)2

∑
α,β

∑
α′,β′

σµα,β σ
ν
α′,β′

∫
d3G(xβ, x3α3)

×G(x3α3, xα)L(x3ᾱ3, x
′β′;x+

3 ᾱ3, x
′+α′)

− v0

4
(−i)2

∑
α,β

∑
α′,β′

σµα,β σ
ν
α′,β′

∫
d3G(xβ, x3α3)

×G(x3ᾱ3, xα)L(x3α3, x
′β′;x+

3 ᾱ3, x
′+α′) (10)

with ᾱ = −α. This is apparently not a closed-form equa-
tion for X itself. However, by means of a set of lengthy
but straightforward transformations, equation (10) can be
cast in the form of a coupled set of equations for the ma-
trix components of the correlation function, as follows:

Xµ,ν(x, x′) = X (0)
µ,ν(x, x′)

+ 2 v0

∑
µ′,ν′

∫
dx′′X (0)

µ,µ′(x, x
′′)εµ′,ν′Xν′,ν(x′′, x′) (11)

where we have introduced the tensor

εµ,ν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (12)

To solve equation (11), the explicit form of the non-
interacting counterpart X (0) of X is required. To this end,
the ground-state average in equation (7) must be eval-
uated in terms of the eigenvalues (εr) and eigenvectors
(Wξ,r) of the mean-field Hubbard Hamiltonian (see also
Sect. 3), yielding for the time Fourier transform of X (0)

the expression

X (0)
µ,ν(r, r′;ω) =

1
4N 2

∑
i,j

BZ∑
k,k′

ei(k−k′)·(Ri−Rj) |φ(r−Ri)|2 |φ(r′ −Rj)|2

×
∑
r,r′

∑
µ′,ν′

Tµ,µ′(Ωi)Tν,ν′(Ωj)F
µ′

r′,r(k
′,k)F ν

′

r,r′(k,k
′)

×Fr,r′(k,k′, ω) (13)

where BZ stands for the two-dimensional Brillouin zone,
N is the number of lattice sites, and Ωi stands for the
angles defining the local spin quantization axis. In equa-
tion (13), the tensor T (Ωi) is defined as

T (Ωi) =

1 0 0 0
0 cos θi 0 sin θi
0 0 1 0
0 − sin θi 0 cos θi

 , (14)
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X(q, ω) = 2U

0
BBB@

−X(0)
00 (q;ω|Q) X

(0)
03 (q;ω|Q) X

(0)
02 (q;ω|Q) X

(0)
01 (q;ω|Q)

−X(0)
10 (q−Q;ω|Q) X

(0)
13 (q−Q;ω|Q) X

(0)
12 (q−Q;ω|Q) X

(0)
11 (q−Q;ω|Q)

−X(0)
20 (q;ω|Q) X

(0)
23 (Q;ω|Q) X

(0)
22 (q;ω|Q) X

(0)
21 (Q;ω|Q)

−X(0)
30 (q + Q;ω|Q) X

(0)
33 (q + Q;ω|Q) X

(0)
32 (q + Q;ω|Q) X

(0)
31 (Q + Q;ω|Q)

1
CCCA ,

(24)

where θi = Q · Ri within the spiral-spin pattern we are
considering [18]. Moreover, we have introduced the nota-
tion:

Fµr,r′(k,k
′) ≡

∑
ξ,ξ′

W †r,ξ(k)σµξ,ξ′ Wξ′,r′(k′) (15)

as well as

Fr,r′(k,k′, ω) =
[1− fF(εr(k))] fF(εr′(k′))
ω − εr(k) + εr′(k′) + iη

− [1− fF(εr′(k′))] fF(εr(k))
ω − εr(k) + εr′(k′)− iη

(16)

where fF(ε) is the Fermi function, and Wξ,r(k) (with
ξ = +,−) the matrix which diagonalizes the mean-field
Hubbard Hamiltonian below, with corresponding eigen-
values εr(k).

We now consider further the space Fourier transform

Xab(q,q′;ω) =
1
NV0

∫
dr dr′ e−iq·rXab(r, r′;ω)eiq′·r′

≡ 1
V0

S(q)S∗(q′) X̂ab(q,q′;ω) (17)

where V0 is the volume of the elementary crystal cell and

S(q) ≡
∫

dr e−iqr |φ(r)|2 (18)

is a form factor (which can be set equal to unity for all
practical purposes). Applying a suitable unitary transfor-
mation which renders the matrix T (Ωi) of equation (13)
diagonal, one gets for its lattice Fourier transform:

T̄ab(k) =
1
N
∑
i

eik·Ri T̄ab(Ωi)

=

∆(k) 0 0 0
0 ∆(k−Q) 0 0
0 0 ∆(k) 0
0 0 0 ∆(k + Q)

 (19)

∆(k) being the lattice Kronecker delta function. In the
new basis, we thus obtain for the non-interacting correla-
tion function the expression:

X̂ (0)
ab (q,q′;ω) =

1
4N

BZ∑
kk′

∑
a′,b′

∑
r,r′

T̄aa′(k− k′ − q) T̄b′b(k′ − k + q′)

× F̄ a′r′,r(k′,k) F̄ b
′

r,r′(k,k
′)Fr,r′(k,k′, ω) (20)

where the overbar denotes matrices transformed accord-
ing to the above unitary transformation. In this way, the
integral equation (11) reduces to the form:

X̂ab(q,q′;ω) = X̂ (0)
ab (q,q′;ω)

+ 2U
∑
a′b′

∑
q′′

X̂ (0)
aa′ (q,q

′′;ω) ε̄a′b′ X̂b′b(q′′,q′;ω) (21)

where we have introduced the matrix ε̄ given by

ε̄ =

1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

 . (22)

This equation can be readily solved, yielding the closed-
form expression:

X̂ab(q + γaQ,q′;ω) =
∑
a′

[1 +X(q, ω)]−1
aa′

×X(0)
a′b(q + γa′Q;ω|Q)∆(q− q′ − γbQ) (23)

where 1 is the 4 × 4 unit matrix, the matrix X(q, ω) is
defined by

see equation (24) above

with

X
(0)
ab (q;ω|Q) =

1
4N

BZ∑
k

∑
r,r′

F̄ ar′,r(k− q + γaQ,k) F̄ br,r′(k,k− q + γaQ)

× Frr′(k,k− q + γaQ) , (25)

and with the notation γa = 0 for a = 0, 2, γa = −1 for
a = 1, and γa = 1 for a = 3. Although still expressed in the
transformed basis, equation (23) is the desired expression
for the Fourier transform of the generalized correlation
function, which holds within the RPA approximation for
any value of Q.

The spin-wave dispersion relation can eventually be
obtained by searching for the zeros of the inverse matrix
on the right-hand side of equation (23), which is equivalent
to imposing the condition:

det[1 +X(q, ω)] = 0 . (26)

It can be verified that the condition (26) can be mapped
onto the result reported in reference [7], where the dis-
persion relation has then been obtained numerically for
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H(k) =

�
ε0 − µ+ tTe(k) + U(m1 −m2) −itTo(k)

itTo(k) ε0 − µ+ tTe(k) + U(m1 +m2)

�
. (32)

chosen values of Q. In the present paper we proceed in-
stead to deriving the analytic form of the dispersion rela-
tion for small values of the parameter t/U of the Hubbard
Hamiltonian.

To this end, it is convenient to rewrite first the matrix
X in equation (26) in a more conventional basis identified
by the labels (0,+,−, z), with σ± = (σx ± iσy)/

√
2. The

matrix 1 +X(q, ω) is then transformed into:

M(q, ω) = 1 + 2U

×


−X 0,0

0 (q, ω) X 0,−
0 (q, ω) X 0,+

0 (q, ω) X 0,z
0 (q, ω)

−X+,0
0 (q, ω) X+,−

0 (q, ω) X+,+
0 (q, ω) X+,z

0 (q, ω)
−X−,00 (q, ω) X−,−0 (q, ω) X−,+0 (q, ω) X−,z0 (q, ω)
−X z,00 (q, ω) X z,−0 (q, ω) X z,+0 (q, ω) X z,z0 (q, ω)


(27)

where now

Xα,β0 (q, ω) =

1
4N

∑
r,r′

BZ∑
k

Fαr′,r(k−q,k)F βr,r′(k,k−q)Fr,r′(k,k−q, ω)

(28)

and

Fµr,r′(k,k
′) =

∑
ξ,ξ′

W †r,ξ(k)σµξ,ξ′ Wξ′,r′(k′) (29)

with σ+ =
√

2
(

0 1
0 0

)
and σ− =

√
2
(

0 0
1 0

)
. Note that

two columns in the expression (27) appear interchanged
with respect to the original order, owing to the presence
in the final basis of the tensor

ε̃ =

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 −1

 (30)

in the place of ε̄ given by equation (22).
We pass now to perform the small t/U expansion of the

spin-wave dispersion relation obtained from the condition
detM(q, ω) = 0.

3 Expansion in the small parameter t/U

In this section, we obtain explicitly the spin wave dis-
persion relation to second order in the small parameter
t/U , from the general condition detM(q, ω) = 0 obtained
in Section 2 within the RPA approximation for the zero-
temperature broken-symmetry phase with a generic in-
commensurate wave vector Q. To this end, we will pre-
liminary expand the self-consistency parameters of the

mean-field Hamiltonian, as well as the equations they sat-
isfy, at the relevant order in t/U ; we will then expand the
matrix elements of the matrix M(q, ω) defined by equa-
tion (27) at the relevant order in t/U .

3.1 Mean-field equations

The mean-field equations for a single-band Hubbard
Hamiltonian in the presence of an incommensurate spi-
ral spin structure have been discussed in reference [18].
Introducing a local set of spin quantization axis, with the
z axis transformed locally into the axis specified by the
spherical angles Ωi ≡ (θi = Q · Ri, ϕi = 0) at site i,
one transforms the destruction operators ciα according to
equation (2.2) of reference [18] and performs the (Hartree-
Fock) mean-field decoupling of the Hubbard Hamiltonian,
yielding

H(Q) =
BZ∑
k

∑
ξ,ξ′

d†kξHξ,ξ′(k) dkξ′ − UN
(
m2

1 − m2
2

)
(31)

with ξ, ξ′ = (+,−) and where H is the 2× 2 matrix

see equation (32) above.

In the above expressions, ε0 is the site energy, µ the chem-
ical potential, m1 and m2 represent the occupation num-
ber and magnetization along the local quantization axis,
respectively, and Te,o(k) are given in equations (2.14) of
reference [18].
The eigenvalues and eigenvectors of the matrix (32) are
thus given by:

εr(k) = ε0 − µ+ tTe(k) + Um1 (33)

+(−1)r
√
U2m2

2 + t2To(k)2

(r = 1, 2) and

W1(k) =
1

N1(k)

 1

−i
t
U

1
m2

To(k)

1+

r
1+( tU )2 1

m2
2
To(k)2

 (34)

W2(k) =
1

N2(k)

−i
t
U

1
m2

To(k)

1+

r
1+( tU )2 1

m2
2
To(k)2

1

 (35)

where Nr(k) stands for the normalization factor.
The parameters m1, m2, and Q of the mean-field

Hamiltonian (31) are obtained, as usual, by minimizing
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the average value of the Hamiltonian with respect to the
parameters themselves. One obtains:

m1 =
1

2N

BZ∑
k

∑
r

fF(εr(k)) =
1 + δ

2
, (36)

where fF(ε) is the (zero-temperature) Fermi function and
δ is the doping parameter ,

m2 =
1

2N

BZ∑
k

∑
ξ

∑
r

ξ W †r,ξ(k)Wξ,r(k) fF(εr(k)) , (37)

and

BZ∑
k

∑
ξ,ξ′

∇QHξ,ξ′(k)
∑
r

W †r,ξ(k)Wξ′,r(k) fF(εr(k)) = 0 .

(38)

In the following, we shall restrict to the diagonal solution
Q = Q(1, 1), since it is known to be favored for suffi-
ciently small values of t/U [18]. Accordingly, at the order
we are considering of the small parameter t/U we expand
formally:

εr(k) = U

[
ε(0)
r (k) − µ(0) +

(
t

U

)
(ε(1)
r (k)− µ(1))

+
(
t

U

)2

(ε(2)
r (k) − µ(2)) + · · ·

]
(39)

as well as

m2 = m
(0)
2 +

(
t

U

)
m

(1)
2 +

(
t

U

)2

m
(2)
2 + · · · , (40)

while, at the relevant order we can take

W1(k) =
1

Nr(k)

(
1

−i tU
To(k)

2m
(0)
2

)
(41)

W2(k) =
1

Nr(k)

(
−i tU

To(k)

2m
(0)
2

1

)
(42)

where

1
Nr(k)2

= 1−
(
t

U

)2
(
To(k)

2m(0)
2

)2

+O
((

t

U

)3
)

(43)

is independent from r. Note that it is sufficient to retain
the lowest-order term m

(0)
2 in the above equations. The

parameterm1, on the other hand, is given by equation (36)
and is thus formally independent from t/U (we anticipate,
however, that the doping parameter δ will turn out to be
at most of the order t/U for our expansions to be internally
consistent).

The coefficients ε
(n)
r (k) of equation (39) with n =

0, 1, 2, · · · can be readily obtained from the expression (33)

(where we may set ε0 = 0 for simplicity) in terms of the
m

(n)
2 (for given Q). The value of µ(0) can also be readily

obtained in terms of ε(0)
r (cf. Appendix A). The remain-

ing coefficients of the expansions (39) and (40) can fur-
ther be determined by solving the coupled equations for
the self-consistency parameters according to the methods
developed in the Appendices A and B. In particular, for
δ > 0 we obtain:

m
(0)
2 =

1
2

(1− δ)

m
(1)
2 = 0

m
(2)
2 = −4 sin2(Q/2) +O(δ) , (44)

µ(0) −m(0)
2 =

1
2

(1 + δ)

µ(1) −m(1)
2 = cos(Q/2)[4− 4πδ +O(δ2)]

µ(2) −m(2)
2 = 0 +O(δ) , (45)

and

ε(0)
r (k) =

1
2

[(1 + δ) + (−1)r(1− δ)]

ε(1)
r (k) = Te(k)

ε(2)
r (k) = (−1)r

[
T 2

o (k) − 4 sin2(Q/2)
]

+O(δ) , (46)

where for the spiral configuration we are considering Q is
determined by the condition

cos(Q/2) =
−Uδ

2t
+O (t/U) (47)

with δ ≤ 2(t/U) +O((t/U)2), as anticipated. (The other
allowed solution sin(Q/2) = 0 describes instead the fer-
romagnetic case.) As discussed in Appendix A, the above
results have been obtained with the further assumption
that δ is small enough but not infinitesimal, i.e., δ sat-
isfies the condition (t/U)2 � δ. The case δ = 0, on the
other hand, can be considered separately. Note that equa-
tion (47) implies that in the spiral phase δ is at most of
the order t/U . This property has to be taken into account
to get a consistent expansion up to the desired order in
t/U .

3.2 Susceptibilities and spin-wave dispersion

By exploiting some symmetry properties of the factors
Fr,r′ of equation (16), the matrix (27) can be cast in the
simplified form:

M(q, ω) = 1− a(q, ω) ib(q, ω) −ib(−q,−ω) c(q, ω)
ib(q, ω) 1 + d(q, ω) e(q, ω) if(q, ω)

−ib(−q,−ω) e(q, ω) 1 + d(−q,−ω) −if(−q,−ω)
−c(q, ω) −if(q, ω) if(−q,−ω) 1 + g(q, ω)


(48)
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where we have set

a(q, ω) = 2U X 0,0
0 (q, ω)

b(q, ω) = −2 iU X 0,−
0 (q, ω)

c(q, ω) = 2U X 0,z
0 (q, ω)

d(q, ω) = 2U X+,−
0 (q, ω) (49)

e(q, ω) = 2U X+,+
0 (q, ω)

f(q, ω) = −2 iU X+,z
0 (q, ω)

g(q, ω) = 2U X z,z0 (q, ω) .

Entering then the expansions (41–43) for the eigenvec-
tors of the mean-field Hamiltonian (with m

(0)
2 given by

Eq. (44)) into the definition (29), we obtain the ex-
pressions for the relevant matrix elements of the non-
interacting susceptibility tensor (28) reported in Ap-
pendix A at the order in t/U we are considering. Utilizing
further the method developed in Appendix B to perform
the k summation when the doping parameter δ is small,
we obtain eventually the following expressions for the ma-
trix elements (49):

a(q, ω) = a(q) =
−1

2 cos(Q/2) (cos qx + cos qy − 2)
δU

t

+O (t/U) ,

b(q, ω) = b(q)=
− sin(Q/2) (sin qx + sin qy)√

2 cos(Q/2) (cos qx + cos qy − 2)
δ

+O
(

(t/U)2
)
,

c(q, ω) = c(q) = −a(q, ω) +O (t/U) ,

e(q, ω) = e(q) = −4
(
t

U

)2

sin2(Q/2)

×(cos qx + cos qy) +O
(

(t/U)3
)
,

f(q, ω) = f(q) = b(q, ω) +O
(

(t/U)2
)
,

g(q, ω) = g(q) = a(q, ω) +O (t/U) , (50)

as well as

d(q, ω) ≡ −1− ω̃ + α(q) +O
(

(t/U)3
)

= −1− ω̃ +
(
t

U

)2

4 cos2(Q/2)

×(cos qx + cos qy − 2) + 8
(
t

U

)2

sin2(Q/2)

+2
(
t

U

)
δ cos(Q/2) (cos qx + cos qy − 2)

−2
(
t

U

)
δ

sin2(Q/2) (sin qx + sin qy)2

cos(Q/2) (cos qx + cos qy − 2)

+O
(

(t/U)3
)

(51)

where ω̃ ≡ ω/U will turn out to be of order t2/U2 at the
spin-wave poles.

To obtain the above expressions, we have considered
only the real part of the functions (16). This is definitely
possible for every pairs of bands when we restrict to values
of q such that |q| � kF, where kF (by our definition) is
the maximum value of the function k(φ) introduced in
Appendix B, which coincides with the Fermi momentum
for small δ. Since we have shown in the same appendix
that k(φ) ∼

√
δ ∼

√
t/U , taking the q → 0 limit implies

letting t/U to vanish before q.
Note also that, although the expressions (50) and (51)

have been calculated at different orders in t/U , the ensuing
expression for the determinant of the matrix (48) is ob-
tained consistently at the fourth order in t/U , as required
for the frequency of the spin-wave mode to be of the order
of t2/U . In fact, by writing the determinant explicitly we
obtain:[

(1− a(q)) (1 + a(q)) + a2(q) +O (t/U)
]

×
[
(−ω̃ + α(q)) (ω̃ + α(q)) − e2(q) +O

(
(t/U)5

)]
+2 [1− a(q) +O (t/U)]

[
b2(q) +O

(
(t/U)3

)]
×
[
e(q)− α(q) +O

(
(t/U)3

)]
−2 [1 + a(q) +O (t/U)]

[
b2(q) +O

(
(t/U)3

)]
×
[
e(q)− α(q) +O

(
(t/U)3

)]
+ 4 [a(q) +O (t/U)]

[
b2(q) +O

(
(t/U)3

)]
×
[
e(q)− α(q) +O

(
(t/U)3

)]
= 0 . (52)

Note that the last three terms on the left-hand side add
up to zero at the fourth order in t/U we are considering.
We are thus left with the expression

ω̃2 − α2(q) + e2(q) +O
(

(t/U)5
)

= 0 , (53)

yielding

ω2(q) = U2
(
α2(q)− e2(q)

)
+O

(
t5/U3

)
. (54)

Taking into account the expressions for α(q) and e(q)
given above, we get eventually the desired spin-wave dis-
persion relation, in the form:

ω2(q) = 16
t4

U2
cosQ (cos qx + cos qy − 2)

× [cos qx + cos qy − 2 cosQ]

+16
t3

U
δ

[
cos(Q/2) (cos qx + cos qy − 2)

− sin2(Q/2) (sin qx + sin qy)2

cos(Q/2) (cos qx + cos qy − 2)

]
×
[
cos2(Q/2) (cos qx + cos qy − 2) + 2 sin2(Q/2)

]
+4 δ2 t2

[
cos(Q/2) (cos qx + cos qy − 2)

− sin2(Q/2) (sin qx + sin qy)2

cos(Q/2) (cos qx + cos qy − 2)

]2

.

(55)
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Fig. 1. Real (a) and imaginary (b) part of the spin-wave dispersion relation (58) (in units of Jeff ), obtained with a diagonal-spiral
spin configuration background. Note that the Q-dependence is contained in Jeff only.

To obtain the physical dispersion relation, however, there
remains to enter in the above expression the relation
among Q, δ, and t/U as given by the mean-field condi-
tion (47), as discussed in the next section.

4 Results and discussion

In this section, we discuss the physical consequences of the
dispersion relation (55) for spin-wave excitations over an
incommensurate (diagonal) spiral magnetic configuration
of a two-dimensional Hubbard Hamiltonian.

We have already remarked that the dispersion relation
(55) is not yet in its final form, since the connection among
Q, δ, and t/U needs still to be specified. Before consider-
ing the general case, however, it is interesting to recover
from equation (55) the spin-wave dispersion relations cor-
responding to the limiting cases of an antiferromagnet and
of a ferromagnet.

When δ = 0, equation (A.12) yields cos(Q/2) = 0,
that is Q = QAF = (π, π). In this case we obtain from
equation (55) (by setting δ = 0 identically therein):

ω(q) = J
(AF)
eff

[
4− (cos qx + cos qy)2

] 1
2

(56)

with J
(AF)
eff = 4t2/U . This result coincides with the spin-

wave dispersion relation of a two-dimensional Heisenberg
antiferromagnet at leading order in t/U [19].

When Q = (2π, 2π) and δ arbitrary, we obtain instead
from equation (55)

ω(q) =
4t2

U

∣∣∣∣(1− δU

2t

)∣∣∣∣ (2− cos qx − cos qy) , (57)

which coincides with the spin-wave dispersion relation of
a nearest-neighbor Heisenberg ferromagnet with J

(F)
eff =

4t2/U [1− δU/(2t)]. Note that J(F)
eff is negative since the

(mean-field) ferromagnetic solution is actually stable when
δ ≥ 2t/U .

In the general case of a (diagonal) spiral spin configu-
ration, the relation among Q, δ, and t/U is given by equa-
tion (A.12), that is, δ = −(2t/U) cosQ/2 +O((t/U)2) at
the leading order in t/U . Eliminating Q in favor of δ and
t/U via this relation in equation (55), we obtain eventually
the following expression:

ω(q) =

Jeff

{[
2− (sin qx + sin qy)2

2− cos qx − cos qy

]2

− (cos qx + cos qy)2

} 1
2

(58)

where now the effective exchange integral is given by

Jeff =
4t2

U
sin2(Q/2) =

4t2

U

(
1−

(
U

2t
δ

)2
)

=
4t2

U

(
1−

(
δ

δc

)2
)

(59)

with δc ≡ 2t/U . Equation (58) constitutes the main result
of this paper. Note that when δ reaches the critical value
δc, Jeff vanishes. Past this value, the spiral solution evolves
into the ferromagnetic solution, which becomes the stable
solution (at the mean-field level).

The real and imaginary parts of ω(q) (in units of
Jeff), as obtained from the analytic expression (58), are
plotted in Figures 1a and 1b, respectively, over the two-
dimensional Brillouin zone.

It is clear from the expression (58) that ω(q) is ei-
ther real or purely imaginary, so that, when its real part
is nonvanishing, its imaginary part vanishes identically,
and vice versa. Actually, this is true in the region of
the Brillouin zone where our expansion holds, namely, for
|q| � kF (cf. the discussion below Eq. (51)). For |q| < kF,
the spin-wave dispersion acquires a damping due to the
mixing with the particle-hole continuum [20]. An excep-
tion is represented by the line qx = qy, along which the real
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and imaginary parts vanish simultaneously. The softening
of the dispersion relation along the whole line qx = qy and
not only when q = 0 and q = Q (as one would expect on
general grounds in the presence of a spiral spin configura-
tion [7]) corresponds to the fact that ω(q) given by equa-
tion (58) can be cast in the form ω(q) = f(Q) gQ̂(q); as
ω(q = Q) = 0 invariably, it follows that gQ̂(q = Q) = 0
since gQ̂(q) does not depend on |Q|. This implies that
gQ̂(qx = qy) ≡ 0 identically.

One expects this result to be modified, however, at
higher order in t/U . In this respect, it is interesting to
compare with the results obtained by Brenig [7] by solving
numerically the condition (26) directly, without perform-
ing the expansion in the small parameter t/U . One sees, in
particular, from Figure 6 of Brenig’s paper (obtained for
δ = 0.075) that ω(q) remains indeed finite along qx = qy
already when t/U = 0.1.

Figure 2 shows the region of the Brillouin zone (shaded
area) where ω(q) is overdamped (purely imaginary) (with
the region about q = 0 excluded according to the argu-
ment given in Sect. 3). A finite region of the Brillouin
zone where the dispersion relation is overdamped is also
reported in reference [7], even though a direct compar-
ison with our results is not possible owing to the dif-
ferent ranges of the parameter t/U explored. This over-
damping signals an instability of the system (due to the
merging into the particle-hole continuum) toward a differ-
ent ground state, reflecting possibly a more complicated
long-range spin (and charge) structure than the spin-spiral
one considered in the present paper. Nonetheless, we ex-
pect on physical grounds that close to the boundary of
the Brillouin zone (where overdamping of spin waves does
not occur in our calculation) the spin-wave spectrum with
small wavelength obtained by our approach would survive
the inclusion of more complicated long-range spin struc-
tures.

It is also interesting to compare the form of the dis-
persion relation (58) with the spin-wave dispersion rela-
tion obtained with the Heisenberg model including second
and third nearest-neighbor couplings, for the same value
of the incommensurability wave vector Q (cf. Ref. [21]).
This comparison is shown in Figure 3 along the symmetry
lines of the Brillouin zone and evidences marked differ-
ences between the two dispersion relations.

Returning to the dispersion relation (58) for δ 6= 0,
we emphasize that its functional form could not be ob-
tained from the dispersion relation (56) valid when δ = 0,
by simply modifying the numerical values of the exchange
integral therein. Nor, it would be sufficient to include a fi-
nite number of exchange integrals in the Heisenberg model
to account for the finite doping, owing to the presence
of an RKKY-type term in equation (58) which contains
trigonometric functions in the denominator rather than
in the numerator only (cf. Appendix C). Recall, in fact,
that for practical purposes the Heisenberg model can be
regarded as a fitting model which could, in principle, repro-
duce any type of spin-wave dispersion relation, provided
a sufficiently large number of terms associated with dis-
tant neighbors were included [22]. In addition, it appears
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Fig. 2. Region of the two-dimensional Brillouin zone where
the spin-wave dispersion is overdamped (shaded area). Note
that this region does not depend on Q, and that the region
about the center of the Brillouin zone has been excluded by
construction.

1.0

2.0

(0,0)(π,0)(π,π)

J

(0,0)

Re    (q)ω

Fig. 3. Comparison of the spin-wave dispersion relations along
the symmetry directions of the Brillouin zone, as obtained for
the itinerant model (full line) and for the Heisenberg model
with second (J2/J1 = 0.2) and third (J3/J1 = 0.2) nearest-
neighbor couplings (broken line). Both dispersions correspond
to the same value of Q = 2.556 and are plotted in units of
J = 4t2/U and J1, respectively.

fair to say that it would have been certainly difficult to
guess a priori the functional form of the dispersion rela-
tion (58), by fitting the numerical results for the itiner-
ant model onto the Heisenberg model extended to a large
number of neighbors.

It is also interesting to comment on the effective ex-
change integral (59) retaining the t2/U dependence of the
nearest-neighbor Heisenberg model, even when couplings
between far apart neighbors are considered. From a per-
turbative point of view, when U � t the magnetic inter-
action between a given lattice site and far apart neighbors
is provided by the mobility of the holes in the doped con-
figurations. In this respect, one should consider all possi-
ble configurations with empty sites distributed at random
over the lattice sites, the mobility of the holes then result-
ing by diagonalizing the Hamiltonian in this basis. As a
consequence, the magnetic exchange coupling turns out to
be proportional to t2/U at leading order, even for coupling
between sites at arbitrary distances.
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As anticipated in the Introduction, the form (58)
is somewhat hybrid between the one obtained with a
nearest-neighbor Heisenberg model (cf. Ref. [21]) and the
long-range RKKY interaction mediated by the conduc-
tion electrons (cf. Appendix C). These two contributions
to equation (58) cannot be separated in a clear and unam-
biguous way. However, it is possible to trace their origin
by considering the expressions (A.13) and (A.14) for the
relevant matrix elements of the susceptibility.

If one could set “by hand” F22 = 0 in those expres-
sions, thus keeping only the interband terms, one would
in fact obtain for the dispersion relation:

ω(q) = Jeff

[
4− (cos qx + cos qy)2

] 1
2 , (60)

which corresponds to a nearest-neighbor Heisenberg an-
tiferromagnet with exchange coupling given by equa-
tion (59). Similarly, if one could set F21 = F12 = 0 “by
hand”, thus keeping only the intraband terms, one would
instead obtain an expression of the RKKY-type:

ω(q) = Jeff
(sin qx + sin qy)2

2− cos qx − cos qy
(61)

with Jeff still given by equation (59). Note that in both
cases the spectrum would be real and no overdamping
would occur. Our general result (58) can then be cast in
the following appealing form:

ω(q) =
{

[J(q = 0) − ω(q)RKKY]2 − J(q)2
}1/2

(62)

where J(q) = Jeff (cos qx + cos qy) and ω(q)RKKY is given
by the expression (61). Note, in particular, that if one
could set ω(q)RKKY = 0, the Heisenberg form (60) would
result from equation (62).

A final comment on the possible comparison between
the spin-wave spectrum we have obtained and the avail-
able experimental data is in order. That the classical
spin-wave theory (possibly with quantum corrections [23])
can accurately describe the spin-wave spectrum over the
whole Brillouin zone for the parent compounds of high-
temperature superconductors (zero doping) is well estab-
lished at this point [1]. That when carriers are added (fi-
nite doping) incommensurate spin fluctuations occur with
rather short coherence length has also been well estab-
lished in several materials [1]. It is interesting to point
out, in addition, that the observation of well-defined spin
waves only close to the boundary of the Brillouin zone
has been reported [3], consistently with what we have ob-
tained by our calculation. However, detailed comparison
with our form (58) of the spin-wave dispersion relation
with the experimental data may not be possible, because
our result is valid in the asymptotic limit U �W , where
W ∼ 8t is the bandwidth, which may not be realized for
real materials.

5 Concluding remarks

In this paper, we have studied the spin-wave spectrum for
a two-dimensional Hubbard Hamiltonian in the presence

of an incommensurate spin-spiral phase within the elec-
tronic RPA approximation in the broken-symmetry phase.
We have, in particular, obtained the analytic form of this
spectrum at the leading order in the small parameter t/U
of the Hubbard Hamiltonian. Specifically, it has been pos-
sible to obtain the spectrum in a closed form even in the
presence of an incommensurate structure, owing to the
peculiar symmetry which is intrinsic to the spiral phase.
In this respect, starting from an alternative mean-field
configuration different from the spiral one (such as, for
instance, a “stripe” structure) would have not enabled us
to solve for the spin wave spectrum in a closed form. By
our approach, we have thus pushed the analytic results for
the spin wave spectrum of an incommensurate structure
as far as possible (apart, obviously, from including higher
orders in the t/U expansion which could still be done by
our approach).

Alternatively, the spin-wave spectrum could have been
obtained numerically for any value of t/U without per-
forming the small t/U expansion, as already reported in
reference [7]. In this way, however, it would have been
rather difficult (if not impossible) to arrive at the func-
tional form (58) for the spin-wave dispersion relation
in the strong-coupling limit, which has an hybrid form
between the dispersion relation for a nearest-neighbor
Heisenberg model and that obtained within the (long-
range) RKKY interaction in the presence of a finite dop-
ing. Owing to the itinerant character of the system, it is, in
fact, the presence of a band of metallic character (crossed
by the Fermi level) which generates the RKKY magnetic
interaction between the localized spins associated with the
(filled) lower band. This novel feature constitutes the main
result of the present paper. We have concluded accordingly
that, even for small doping, the itinerant model we have
considered results in a dispersion relation ω(q) that can-
not be effectively represented by the Heisenberg model, for
which the couplings extend to a few neighbors only. This
occurs because the free carriers, associated with the itin-
erant character of our starting Hamiltonian, necessarily
introduce long-range RKKY-type magnetic interactions
among the localized spins.

A serious concern, which is related to the spin-wave
spectrum we have obtained, regards the instability occur-
ring about the center of the Brillouin zone, where the spin-
wave spectrum becomes purely imaginary. To overcome
this point, one should possibly start from a more com-
plicated incommensurate mean-field solution other than
the spiral configuration, with a lower ground-state energy.
In this way, however, one would unavoidably not obtain a
closed-form equation for the spin-wave spectrum, since the
incommensurability could in general prevent it. Nonethe-
less, we expect on physical grounds the spin-wave spec-
trum we have obtained with the spiral pattern to survive
inclusion of more realistic spin structures, if one considers
only the region close to the boundary of the Brillouin zone,
for which knowledge of the detailed form of the underlying
(long-range) spin pattern appears to be less crucial.
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Appendix A: Details of the t/U expansion

In this appendix, we provide details of the t/U expansion
of the mean-field parameters and of the matrix elements
of the correlation function which are necessary to obtain
the spin-wave dispersion relation.

We begin by considering the leading (t = 0) term of
the expansion (39) for the mean-field (band) eigenvalues,
corresponding to completely flat bands, which is given by
(cf. Eq. (33))

εr(k) = U
(
ε(0)
r − µ(0)

)
= U(m1 + (−1)rm2)− µ0

(A.1)

with r = 1, 2 and where µ0 = Uµ(0) is the chemical poten-
tial at the lowest order in t/U . Since at this order the band
eigenvalues do not depend on the wave vector, there is no
value of the chemical potential µ(0) satisfying equation
(36) at zero temperature and non integer doping δ. More
precisely, the doping jumps from δ = −1 when µ(0) < ε

(0)
1 ,

to δ = 0 when ε
(0)
1 < µ(0) < ε

(0)
2 , and to δ = +1 when

µ(0) > ε
(0)
2 . In order to consider a continuously doped sys-

tem, it is therefore necessary to include at the outset the
next-to-leading order in the expansion (39) of the band
eigenvalues, which introduces a band dispersion.

For definiteness, we shall consider the case δ > 0 from
now on. (The case δ < 0 can be recovered by exploiting
particle-hole symmetry.) In the case δ > 0, the lowest
band is always filled, and we will consistently use (the
zero-temperature value) fF(ε1(k)) = 1 throughout. On
the other hand, the zeroth order chemical potential for
0 < δ < 1 must be chosen as µ(0) = ε

(0)
2 . Since in the

U → ∞ limit the bands are flat, one must be careful in
taking an appropriate expansion in powers of t/U of the
zero-temperature limit of the Fermi function and of its
derivatives. We thus introduce the step function Θ(x), and
the Dirac function δ(x) (not to be confused with doping),
along with its derivatives. In this way, equation (36) can
be expressed in powers of t/U , yielding

1
N

BZ∑
k

Θ
(
ε
(1)
2 (k) − µ(1)

)
= 1− δ ,

1
N

BZ∑
k

δ
(
ε
(1)
2 (k)− µ(1)

)
(ε(2)

2 (k)− µ(2)) = 0 ,

1
2N

BZ∑
k

[
δ′
(
ε
(1)
2 (k)− µ(1)

)
(ε(2)

2 (k)− µ(2))2

+2 δ
(
ε
(1)
2 (k) − µ(1)

)
(ε(3)

2 (k) − µ(3))
]

= 0 .

(A.2)

Similarly, the small t/U expansion (40) of equation (37)
yields (cf. also Eqs. (41–43)):

m
(0)
2 =

1
2N

BZ∑
k

Θ
(
ε
(1)
2 (k)− µ(1)

)
,

m
(1)
2 =

1
2N

BZ∑
k

δ
(
ε
(1)
2 (k)− µ(1)

)
(ε(2)

2 (k) − µ(2)) ,

m
(2)
2 = − 1

N

BZ∑
k

(
To(k)

2m(0)
2

)2

Θ
(
ε
(1)
2 (k) − µ(1)

)
+

1
4N

BZ∑
k

δ′
(
ε
(1)
2 (k)− µ(1)

)
(ε(2)

2 (k)− µ(2))2

+
1

2N

BZ∑
k

δ
(
ε
(1)
2 (k)− µ(1)

)
(ε(3)

2 (k)− µ(3))

= − 1
N

BZ∑
k

(
To(k)

2m(0)
2

)2

Θ
(
ε
(1)
2 (k) − µ(1)

)
. (A.3)

There remains to expand in powers of t/U the self-
consistency equation (38). For the diagonal spin-spiral so-
lution we obtain:

0 = sin(Q/2)
1
N

BZ∑
k

(cos kx + cos ky) (1 + fF(ε2(k)))

+
(
t

U

)
cos(Q/2)

1

m
(0)
2

1
N

×
BZ∑
k

To(k) (sin kx + sin ky) (1− fF(ε2(k))) (A.4)

where the expansion of the Fermi functions has still to be
inserted.

From equation (33), the argument of the Θ function
is Te(k) +m

(1)
2 − µ(1) (with Te(k) = 2 cos(Q/2) (coskx +

cos ky) for the diagonal spiral solution), which can take
positive as well as negative values.

At the various orders in t/U we then obtain from equa-
tions (A.2) and (A.3):
(i) order (t/U)0

1
N

BZ∑
k

[
1−Θ

(
Te(k) +m

(1)
2 − µ(1)

)]
= δ ,

m
(0)
2 =

1
2N

BZ∑
k

Θ
(
Te(k) +m

(1)
2 − µ(1)

)
; (A.5)

(ii) order (t/U)1

1
N

BZ∑
k

δ
(
Te(k) +m

(1)
2 − µ(1)

)
(ε(2)

2 (k)− µ(2)) = 0 ,

m
(1)
2 =

1
2N

BZ∑
k

δ
(
Te(k)+m(1)

2 −µ(1)
)

(ε(2)
2 (k) − µ(2)) ;

(A.6)
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(iii) order (t/U)2

m
(2)
2 = − 1

N

BZ∑
k

(
To(k)

2m(0)
2

)2

Θ
(
Te(k) +m

(1)
2 − µ(1)

)
,

(A.7)

and we don’t need to evaluate (ε(3)
2 (k)−µ(3)) at the order

we are considering. It is convenient to solve these equa-
tions order-by-order for the two variables µ(i) −m(i)

2 , and
m

(i)
2 (i = 0, 1, 2).

Using at this point the method developed in Ap-
pendix B for performing the k summation over the rel-
evant portions of the Brillouin zone, we obtain eventually
the following results for the mean-field parameters at the
leading orders in δ:

m
(0)
2 = (1− δ)/2

m
(1)
2 = 0

m
(2)
2 = −4 sin2(Q/2) +O(δ) ,

(A.8)

and
µ(0) −m(0)

2 = m1 = (1 + δ)/2

µ(1) −m(1)
2 = 4 cos(Q/2) (1− πδ +O(δ2))

µ(2) −m(2)
2 = 0 +O(δ) .

(A.9)

There remains to determine the magnitude Q of the char-
acteristic wave vector from the self-consistency condi-
tion (A.4), where the expansion of the Fermi function has
to be inserted. Equation (A.4) then becomes:(

t

U

)
sin(Q/2)

1
N

BZ∑
k

(cos kx + cos ky)

×
[
2−Θ

(
Te(k) +m

(1)
2 − µ(1)

)
−
(
t

U

)
δ
(
Te(k) +m

(1)
2 − µ(1)

)
×
(
ε
(2)
2 (k) − µ(2)

)]
+ 2

(
t

U

)2

cos(Q/2)

× 1

2m(0)
2

1
N

BZ∑
k

(sin kx + sin ky)To(k)

×Θ
(
Te(k) +m

(1)
2 − µ(1)

)
= 0 . (A.10)

In particular, at the lowest order in t/U we obtain:

sin(Q/2) (2 δ +O(δ2)) = 0 . (A.11)

For fixed δ and large U/t, one thus has only the ferromag-
netic solution Q = 0. However, if one allows δ to be of the
order t/U , equation (A.11) has to be considered together
with the next term in t/U , and we obtain instead:

sin(Q/2) (2 δ +O(δ2))

+ 4
t

U
sin(Q/2) cos(Q/2) (1 +O(δ)) = 0 (A.12)

which yields the two solutions

sin(Q/2) = 0 (ferromagnet)

cos(Q/2) = −δU/2t (diagonal spiral) ,

with the spiral solution being energetically favored over
the ferromagnetic solution whenever it exists. From the
above equation, it is clear that the spiral solution exists
for any δ ≤ 2t/U , which is consistent with our assump-
tion that the doping parameter δ is at most of order t/U
in the spiral phase, thus justifying the expansion of Ap-
pendix B. The transition to the ferromagnetic state is sec-
ond order, as the incommensurability vector Q decreases
continuously from Q = π to Q = 2π with increasing δ.

We pass finally to consider the t/U expansion of the
matrix elements of the correlation function. To begin with,
we use the expressions (41–43) for the eigenvectors of the
mean-field Hamiltonian and obtain from the definitions
(28) and (29):

X+,−
0 (q, ω) =

1
2N

BZ∑
k

{[
1−

(
t

U

)2 (
T 2

o (k)

+T 2
o (k− q)

) ]
F2,1(k,k− q, ω)

+
(
t

U

)2 [
T 2

o (k)F1,1(k,k− q, ω)

+T 2
o (k− q)F2,2(k,k− q, ω)

]}
+O

(
(t/U)3

)
(A.13)

X+,+
0 (q, ω) =

1
2N

BZ∑
k

{(
t

U

)2

To(k)To(k− q)

+ [F1,2(k,k− q, ω) + F2,1(k,k− q, ω)

− F1,1(k,k− q, ω)−F2,2(k,k− q, ω)]
}

+O
(

(t/U)3
)

(A.14)

for the matrix elements entering the final expression (54)
of the spin-wave dispersion relation. Note that in the
above expressions F1,1(k,k − q, ω) = 0 when the doping
parameter δ ≥ 0. In addition, F1,2 can be obtained from
F2,1 through an appropriate symmetry condition. Mak-
ing use of the expansion (39) for the eigenvalues of the
mean-field Hamiltonian, we write further

F2,2(k,k− q) =
1
t

[fF(ε2(k− q))− fF(ε2(k))]

× 1
Te(k− q)− Te(k)

+O (1/U) (A.15)
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as well as

F2,1(k,k− q) = [fF(ε2(k))− 1]
1
U

{
1

(1− δ − ω̃)

−
(
t

U

)
1

(1− δ − ω̃)2
[Te(k)−Te(k− q)]

+
(
t

U

)2 [ 1
(1− δ − ω̃)2

×
(
−T 2

o (k) − T 2
o (k− q)− 2m(2)

2

)
+

1
(1− δ − ω̃)3

(Te(k) − Te(k− q))2

]}
+O

(
t3/U4

)
(A.16)

with ω̃ = ω/U , where the expansion of the Fermi function
has still to be inserted.

Appendix B: Sums over the two-dimensional
BZ in the small δ limit

In this appendix, we develop a method suitable for per-
forming the k summation over the relevant portions of the
Brillouin zone in powers of the doping parameter δ. This
is, in turn, justified by the fact that δ in the spiral phase
is of order t/U , as shown in Appendix A.

The typical integral to be evaluated is of the form:

I(γ) =
1
N

BZ∑
k

g(k)Θ (Te(k) + γ) (B.1)

where Te(k) = 2 cos(Q/2)(coskx+cos ky) for the diagonal
spiral solution we are considering and γ is a parameter
(which depends on the chemical potential µ(1) at the or-
der O

[
(t/U)0

]
) that in the following we shall simply call

µ for simplicity. Introducing the notation fµ such that
γ = 4 cos(Q/2)(1 − fµ/4) for any given Q value, recall-
ing the definition of the Θ function, and considering that
cos(Q/2) < 0 in our solution, we set further:

I(γ) =
1
N

∑
cos kx+cos ky≤2−fµ/2

g(k) . (B.2)

Quite generally, we can introduce a polar representation
for the two-dimensional wave vector k and determine for
each value of the polar angle φ the magnitude k(φ), such
that the equality

cos (k(φ) cosφ) + cos (k(φ) sinφ) = 2− fµ
2

(B.3)

is satisfied. In this way we rewrite the integral (B.2) as
follows:

I(γ) =
1

4π2

∫
BZ

dkxdky g(kx, ky)

− 1
4π2

∫ 2π

0

dφ
∫ k(φ)

0

dk k g(k, φ) , (B.4)

with a slight (albeit harmless) abuse of notation for the
function g.
In practice, when fµ is small compared to unity (as it is the
case for small δ) it is convenient to determine k(φ) in pow-
ers of fµ by expanding cos (k(φ) cosφ)+cos (k(φ) sinφ) in
a Taylor series about k = 0. For instance, at the lowest
order we obtain from equation (B.3):

k(φ)2 + O
(
k(φ)4

)
= fµ (B.5)

which gives k(φ)2 = fµ + O
(
f2
µ

)
. At the next significant

order we obtain instead:

k(φ)2 − (sin4 φ+ cos4 φ)
12

k(φ)4 + O
(
k(φ)6

)
= fµ

(B.6)

which gives

k(φ)2 = fµ +
(sin4 φ+ cos4 φ)

12
f2
µ + O

(
f3
µ

)
. (B.7)

Consider, for instance, the first of equations (A.5), which
is of the form (B.1) with g(k) = 1 and γ = m

(1)
2 − µ(1).

Equation (B.4 ) now becomes:

δ =
1

8π2

∫ 2π

0

dφk(φ)2 . (B.8)

Introducing the notation fµ as above, for small values of
δ(> 0) we obtain:

δ =
1

4π

[
fµ +

1
16
f2
µ +O

(
f3
µ

)]
(B.9)

where use has been made of equation (B.7). Inverting this
relation we obtain eventually:

fµ = 4πδ − π2δ2 +O
(
δ3
)
, (B.10)

which confirms the fact that fµ = O(δ).
In general, the case of a k-dependent g can be treated

by expanding g(k) about |k| = 0, since the last integral
on the right-hand side of equation (B.4) is restricted to
|k| < k(φ) = O(δ1/2), and by retaining the relevant or-
ders in δ in the final expression. The integral over the
whole BZ (i.e., the first term on the right-hand side of
equation (B.4)), on the other hand, can usually be per-
formed analytically.

The Brillouin zone sums involving the Dirac delta func-
tions or its derivatives can be further evaluated according
to the following device. Writing

δ (Te(k) + γ) =
∂

∂γ
Θ (Te(k) + γ)

=
1

cos(Q/2)
∂

∂fµ
Θ (Te(k) + γ) , (B.11)



446 The European Physical Journal B

we obtain for the Brillouin zone sum

1
N

BZ∑
k

g(k) δ(n)
(
Te(k) +m

(1)
2 − µ(1)

)
=

1
(cos(Q/2))(n+1)

∂(n+1)

∂(f (1)
µ )(n+1)

1
N

×
BZ∑
k

g(k)Θ
(
Te(k) +m

(1)
2 − µ(1)

)
= − 1

(cos(Q/2))(n+1)

∂(n+1)

∂(f (1)
µ )(n+1)

1
4π2

×
∫ 2π

0

dφ
∫ k(φ)

O

dkk g(k, φ) (B.12)

since the first term on the right-hand side of equa-
tion (B.4) does not depend on fµ.

As an example, we evaluate the expression

1
N

BZ∑
k

T 2
o (k) δ

(
Te(k) +m

(1)
2 − µ(1)

)
which appears in the first of equations (A.6). According to
equation (B.11), we first evaluate the expression (cf. also
Eq. (B.4)):

m
1
N

BZ∑
k

T 2
o (k)Θ

(
Te(k) +m

(1)
2 − µ(1)

)
=

4 sin2(Q/2)− 1
π2

sin2(Q/2)

×
∫ 2π

0

dφ
∫ k(φ)

0

dk k (sin(k cosφ) + sin(k sinφ))2 .

(B.13)

Expanding the factor within parentheses in the last inte-
gral in powers of k, as explained below equation (B.10),
we obtain:

1
N

BZ∑
k

T 2
o (k)Θ

(
Te(k) +m

(1)
2 − µ(1)

)
= 4 sin2(Q/2)− 1

π2
sin2(Q/2)

×
∫ 2π

0

dφ
∫ k(φ)

0

dk k
(
k2(cosφ+ sinφ)2 +O

(
k4
))

= sin2(Q/2)
(
4− 8πδ2 +O(δ3)

)
. (B.14)

Using equation (B.11) we obtain eventually:

1
N

BZ∑
k

T 2
o (k) δ

(
Te(k) +m

(1)
2 − µ(1)

)
(B.15)

=
1

cos(Q/2)
∂

∂fµ

1
N

BZ∑
k

T 2
o (k)Θ

(
Te(k) +m

(1)
2 − µ(1)

)
= − sin2(Q/2)

cos(Q/2)
1
π
fµ+O

(
(f2
µ

)
=−4 δ

sin2(Q/2)
cos(Q/2)

+O(δ2) .

With these prescriptions, the results (A.8–A.10) are read-
ily obtained.

It was shown in Section 3 that, as far as the matrix el-
ements of the correlation function are concerned, only the
explicit expressions of d(q, ω) and e(q, ω) are required at
the order in t/U we are considering in this paper. Writing

d(q, ω) = −1− ω̃ + α(q) +O
(

(t/U)3
)

= I(q, ω)− J(q, ω)−K(q, ω) +M(q, ω)
(B.16)

and

e(q, ω) = L(q, ω) + L(−q,−ω) +N(q, ω) (B.17)

where the quantities I, J, · · · are specified below, we obtain
for the sums over the wave vector k using the method
described in this appendix:

I(q, ω) ≡ U

N

BZ∑
k

F21(k,k− q, ω) =
−1 + δ

1− ω̃ − δ

+
(
t

U

)
2 δ cos(Q/2) (cos qx + cos qy)

+
(
t

U

)2

4 cos2(Q/2) (cos qx + cos qy)

+O
(

(t/U)3
)
, (B.18)

J(q, ω) ≡ U

N

(
t

U

)2 BZ∑
k

T 2
o (k)F21(k,k− q, ω)

= −4
(
t

U

)2

sin2(Q/2)+O
(

(t/U)3
)
, (B.19)

K(q, ω) ≡ U

N

(
t

U

)2 BZ∑
k

T 2
o (k− q)F21(k,k− q, ω)

= −4
(
t

U

)2

sin2(Q/2) +O
(

(t/U)3
)
, (B.20)

L(q, ω) ≡ U

N

(
t

U

)2 BZ∑
k

To(k)To(k− q)F21(k,k− q, ω)

= −2
(
t

U

)2

sin2(Q/2) (cos qx + cos qy)

+O
(

(t/U)3
)
, (B.21)

M(q, ω) ≡ U

N

(
t

U

)2 BZ∑
k

T 2
o (k− q)F22(k,k− q, ω)

= −2 δ
(
t

U

)
sin2(Q/2) (sin qx + sin qy)2

cos(Q/2) (cos qx + cos qy − 2)

+O
(

(t/U)3
)
, (B.22)
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N(q, ω) ≡ U

N

(
t

U

)2 BZ∑
k

To(k)To(k− q)F22(k,k− q, ω)

=
(
t

U

)2

O(δ) = O
(

(t/U)3
)
, (B.23)

where these results hold for |q| � kF, as discussed in
Section 3.2.

For the relevant matrix elements (B.16) and (B.17) we
obtain eventually :

d(q, ω) = −1− ω̃ +
(
t

U

)2

4 cos2(Q/2)

×(cos qx + cos qy − 2) + 8
(
t

U

)2

sin2(Q/2)

+2
(
t

U

)
δ cos(Q/2) (cos qx + cos qy − 2)

−2
(
t

U

)
δ

sin2(Q/2) (sin qx + sin qy)2

cos(Q/2) (cos qx + cos qy − 2)

+O
(

(t/U)3
)

(B.24)

and

e(q, ω) = −4
(
t

U

)2

sin2(Q/2) (cos qx + cos qy)

+O
(

(t/U)3
)
. (B.25)

Appendix C: RKKY spin waves for a spiral
configuration

In this appendix, we show how the part of the disper-
sion relation (58) of the text containing the trigono-
metric functions in the denominator originates from the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction be-
tween two localized spins and mediated by the conduction
electrons [12,24]. The long-range nature of this interaction
is readily evidenced by expanding formally the denomi-
nator in equation (58) as a a power series in cos qx and
cos qy, so that an infinite number of Heisenberg-like terms
appears.

We follow here the treatment by Mattis [24], and con-
sider the interaction Hamiltonian between the localized
spin operators Si (associated with the valence (filled)
band) and the itinerant spin operators sc(Ri) (associated
with the conduction band), where the suffix i specifies the
lattice site. We write accordingly:

Hexc = −I
∑
i

Si · sc(Ri) (C.1)

where I is an exchange integral.

For a generic spin-1/2 operator at site i associated with
the conduction electrons we write:

sµi =
1

2N
∑
k,q

∑
ξ,ξ′

e−iq·Ri d†k+qξ σ
µ
ξ,ξ′ dkξ′ (C.2)

where µ = (+,−, z) and diξ are the destruction operators
along the local spin-quantization axes. Combining these
operators with the eigenvectors of the mean-field Hubbard
Hamiltonian and recalling the notation (15), we cast
equation (C.2) in the form:

sµi =
1

2N
∑
k,q

∑
r,r′

e−iq·Ri γ†k+q,r F
µ
r,r′(k + q,k) γk,r′ ,

(C.3)
with the notation γk,r =

∑
ξ

W †r,ξ(k)dk,ξ.

The restriction to the conduction band implies that
r = r′ = 2 in equation (C.3) when δ > 0. In this case the
Hamiltonian (C.1) becomes:

Hexc = − I

2N
∑
i

∑
µ

(Sµi )†

×
(∑

k,q

e−iq·Ri γ†k+q,2 F
µ
22(k + q,k) γk,2

)
. (C.4)

Applying at this point the standard procedure [24] to
obtain the energy shift of second-order in the Hamilto-
nian (C.4), the following RKKY-type effective Hamilto-
nian results:

HRKKY =
∑
ij

∑
µν

(Sµi )† Jµνij Sνj (C.5)

with the notation

Jµνij =
I2

4N 2

∑
k<kF

∑
|k+q|>kF

e−iq·(Ri−Rj)

×F
µ
22(k + q,k)F ν∗22 (k + q,k)

ε2(k) − ε2(k + q)
· (C.6)

Note that the expression (C.6) does not vanish even when
sites i and j are far apart. Note also that the energy de-
nominator on the right-hand side never vanish by con-
struction.

There remains to obtain the spin-wave dispersion as-
sociated with the spin Hamiltonian (C.5). To this end, we
introduce in equation (C.5) the usual Holstein-Primakoff
transformation for the spin operators and truncate the
expansion in the bosonic operators a and a† to quadratic
order to obtain:

HRKKY = E0+S
∑
|q|�kF

[(
J++(q) + J−−(−q)

)
a†(q)a(q)

+ J+−(q) a†(q) a†(−q) + J−+(−q) a(q) a(−q)
]

(C.7)

where now

E0 = S2
∑
|q|�kF

Jzz(q) + S
∑
|q|�kF

J−−(q) (C.8)
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with the restriction |q| � kF replacing the weaker condi-
tion |k+q| > kF (cf. Sect. 3.2). Note that in equation (C.7)
we have introduced the notation

Jµν(q) =
I2

4N
∑
|k|<kF

Fµ22(k + q,k)F ν∗22 (k + q,k)
ε2(k) − ε2(k + q)

(C.9)

and used the identity
∑
i J

µν
ij = 0 for any given j.

The quadratic Hamiltonian (C.7) is then diagonalized
by the standard Bogoliubov transformation (cf. Ref. [21]).
The resulting spin-wave spectrum has the form:

ωRKKY(q) = S
[(
J++(q) + J−−(−q)

)2
−4J+−(q)J−+(−q)

]1/2
. (C.10)

To proceed further, we need to specify the quantities F+
22,

F−22, and ε2 entering the definition (C.9), at the relevant
order in the small parameter t/U . Using equations (39–42)
we obtain for δ > 0:

F+
22(k + q,k) = i

√
2
(
t

U

)
To(k + q) + O

(
(t/U)2

)
F−22(k + q,k) = − i

√
2
(
t

U

)
To(k) + O

(
(t/U)2

)
(C.11)

as well as

ε2(k)− ε2(k + q) = t (Te(k) − To(k + q)) +O
(
(t/U)2

)
,

(C.12)

where we have approximated 2m(0)
2 = 1− δ ∼= 1.

The method developed in Appendix B can be used at
this point to perform the sum over k in equation (C.9).
The result is:

J++(q) ∼= − I2 t

U2
δ

sin2(Q/2)
cos(Q/2)

× (sin qx + sin qy)2

cos qx + cos qy − 2
, (C.13)

J−−(q) ∼= − I2 t

U2
O(δ2), (C.14)

J+−(q) = J−+(q) ∼= I2 t

U2
O(δ2) . (C.15)

At the lowest order, only J++ contributes to equa-
tion (C.10), which then reduces to:

ωRKKY(q) ∼= S I2 t

U2
δ

sin2(Q/2) (sin qx + sin qy)2

| cos(Q/2)| (2− cos qx − cos qy)
·

(C.16)

The self-consistency equation (47) relating Q to δ and
t/U for the diagonal spiral configuration can eventually
be used, to yield (for S = 1/2):

ωRKKY(q) ∼= Jeff
(sin qx + sin qy)2

2− cos qx − cos qy
(C.17)

with Jeff given by equation (59) of the text and where we
have set I = 2U . Note that equation (C.17) coincides with
equation (61) of the text, which was obtained by setting
“by hand” F21 = F12 = 0 in the full calculation. Note
also that the expression (C.17) involves transverse spin
components only, akin the general expression (54) of the
text.
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